Структури острівного типу з гіперкоординованими атомами

  • А. Г. Гребенюк Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України
Ключові слова: молекулярний кристал, кластер, молекулярний асоціат, , міжмолекулярна взаємодія, гіперкоординація, розподіл електронної густини, електронографія, квантовохімічне моделювання

Анотація

Проаналізовано експериментальні дані та результати теоретичного моделювання просторової будови та хімічних властивостей ізольованих частинок (молекул та кластерів), які характеризуються наявністю гіперкоординованих атомів, а також утворених ними молекулярних кристалів. Розглянуто способи опису розподілу електронної густини в молекулярних кристалах та їхній поліморфізм. Описано вплив хімічної природи молекул бінарних сполук на їхню здатність до асоціації і утворення кластерів та прослідковано перехід від дисперсійної взаємодії до координаційних зв’язків в таких структурах.

В огляді висвітлено властивості багатьох димерів, тримерів та олігомерів гідридів та галогенідів хімічних елементів різної валентності, кластерів елементоорганічних та координаційних (як неорганічної так і органічної природи) сполук, поліедричних структур із некласичною координацією атомів, зокрема, металокарбоедренів. Обговорено результати квантовохімічних розрахунків методами Хартрі-Фока (HF), конфігураційної взаємодії, теорії функціоналу електронної густини (DFT) та теорії збурень Меллера-Плессета другого порядку (MP2) просторової будови та енергетичних характеристик розглянутих моделей. Теоретичні результати порівнюються з наявними екпериментальними даними.

Посилання

Kitaigorodskiy A.I. Molecular crystals. (Moscow: Nauka, 1971). [In Russian].

Tsirelson V.G., Zorkiy P.M. Electron density distribution in crystals of organic compounds. In: VINITI Results of Science and Techics. (Crystal Chemistry. Vol. 20. 1986). - P.124-173. [In Russian].

Simon A. From a molecular view on solids to molecules in solids. J. Alloys and Compounds. 1995. 229(1): 158. https://doi.org/10.1016/0925-8388(95)01681-3

Bartell L.S. Structure and transformation: Large molecular clusters as models of condensed matter. Annu. Rev. Phys. Chem. (Vol. 42. Palo Alto (Calif.), 1998). P. 43. https://doi.org/10.1146/annurev.physchem.49.1.43

Bernstein J. Polymorphism in Molecular Crystals. (Oxford: Oxford University Press, 2010).

Yatsenko A.V. Structure of organic molecules in crystals: modeling with use of electrostatic potential. Uspekhi khimii. 2005. 74(6): 575. [In Russian]. https://doi.org/10.1070/RC2005v074n06ABEH000818

Desiraju G.R. Crystal Engineering: From Molecule to Crystal. Journal of the American Chemical Society. 2013. 135(27): 9952. https://doi.org/10.1021/ja403264c

Davey R.J., Schroeder S.L.M., ter Horst J.H. Nucleation of Organic Crystals - A Molecular Perspective. Angewandte Chemie International Edition. 2013. 52(8): 2166. https://doi.org/10.1002/anie.201204824

Charkin O.P. Stability and structure of gaseous inorganic molecules, radicals and ions. (Moscow: Nauka, 1980). [In Russian].

Lopatin S.I. Gaseous salts of oxygen-containing acids: thermal stability, structure and thermodynamic properties. Russ. J. General Chem. 2007. 77(11): 1761. https://doi.org/10.1134/S1070363207110011

Kaupp M., von Ragué Schleyer P. The peculiar coordination of barium: ab initio study of the molecular and electronic structures of the group 2 dihydride dimers M2H4 (M = Mg, Ca, Sr, Ba). J. Amer. Chem. Soc. 1993. 115(24): 11202. https://doi.org/10.1021/ja00077a018

Lammertsma K., Leszynski J. Ab initio study on dialane (6) and digallane (6). J. Phys. Chem. 1990. 94(7): 2806. https://doi.org/10.1021/j100370a016

Magers D.H., Hood R.B., Leszczyński J. Diborane, dialane, and digallane: accurate geometries and vibrational frequencies. Int. J. Quant. Chem.: Quant. Chem. Symp. 1994. 28: 579. https://doi.org/10.1002/qua.560520852

Barone V., Adamo C., Fliszár S., Russo N. Structural and energetic characteristics of electron deficient M2H6 compounds from a density functional approach. Chem. Phys. Lett. 1994. 222(6): 597. https://doi.org/10.1016/0009-2614(94)00398-X

Barone V., Orlandini L., Adamo C. Density functional study of diborane, dialane, and digallane. J. Phys. Chem. 1994. 98(50): 13185. https://doi.org/10.1021/j100101a016

Souter P.F., Andrews L., Downs A. J., Greens T.M., Ma Buyong, Schaefer H.F. (III). Observed and calculated Raman spectra of the Ga2H6 and Ga2D6 molecules. J. Phys. Chem. 1994. 98(49): 12824. https://doi.org/10.1021/j100100a004

Webb S.P., Gordon M.S. The dimerization of TiH4. J. Amer. Chem. Soc. 1995. 117(27): 7195. https://doi.org/10.1021/ja00132a020

Moc J., Bober K., Mierzwicki K. Trimers and tetramers of MH and MH3 (M = Al, Ga): theoretical study. Chem. Phys. 2006. 327(2-3): 247. https://doi.org/10.1016/j.chemphys.2006.04.015

Luo Yi, Hou Zhaomin. Prediction of binary lanthanide(III) hydride clusters LnnH3n (Ln = La, Gd, and Lu; n = 3 and 4). J. Phys. Chem. C. 2008. 112(2): 635. https://doi.org/10.1021/jp077318z

Zyubin A.S. Quantum chemical study of the structure and stability of aluminum hydride oligomers. Russ. J. Inorgan. Chem. 1997. 42(4): 676.

Zyubin A.S. Quantum chemical study of the structure and stability of gallium hydride oligomers. Russ. J. Inorgan. Chem. 1999. 44(2): 281.

Hargittai M. Molecular structure of metal halides. Chem. Rev. 2000. 100(6): 2233. https://doi.org/10.1021/cr970115u

Dickey R. A theoretical investigation of the geometries, vibrational frequencies and binding energies of several alkali halide dimmers. J. Chem. Phys. 1993. 98(3): 2182. https://doi.org/10.1063/1.464197

Wetzel T.L., Moran T.F., Borkman R.F. Structures and energies of sodium halide ions and neutral clusters computed with ab initio effective core potentials. J. Phys. Chem. 1994. 98(40): 10042. https://doi.org/10.1021/j100091a017

Ystenes M., Westberg N. Ab initio quantum mechanical vibrational analysis of the dimeric molecules Mg2F4, Mg2Cl4 and Mg2Br4. Spectrochim. Acta A. 1995. 51(9): 1501. https://doi.org/10.1016/0584-8539(94)01337-G

Pogrebnaya T.P., Sliznev V.V., Solomonik V.G. Non-empirical study of isomery and vibrational spectra of dimeric molecules M2F4 and MM'F4, where M, M' = Be, Mg, Ca. Russ. J. Coord. Chem. 1997. 23(7): 498.

Levy J.B., Hargittai M. Unusual dimer structures of the heavier alkaline earth dihalides: a density functional study. J. Phys. Chem. A. 2000. 104(9): 1950. https://doi.org/10.1021/jp994339n

Kolonits M., Réffy B., Jancsó G., Hargittai M. Molecular structure and thermochemistry of tin dibromide monomers and dimers. A computational and electron diffraction study. J. Phys. Chem. A. 2004. 108(32): 6778. https://doi.org/10.1021/jp048667l

Saloni J., Roszak S., Miller M., Hilpert K., Leszczynski J. Sn2BrxI4-x (g) and Sn2BryI3-y+ (x = 0 - 4, y = 0 -3) species: Mass spectrometric evidence and quantum-chemical studies. J. Phys. Chem. A. 2004. 108(13): 2418. https://doi.org/10.1002/chin.200425002

El-Bakraoui J., Molina J.M., Olea D.P. Electronic structure of π-allyl-Pd(II) chloride dimer and Pd2X4 (X = Cl, Br, I) model systems: a RHF and density functional theory study. J. Mol. Struct. Theochem. 1998. 426(1-3): 207. https://doi.org/10.1016/S0166-1280(97)00424-7

Poleshchuk O.Kh., Konush Ya., Latoshinska I.N., Nogay B., Shanina Yu. A. Use of density functional theory for analysis of electonic structure and quadrupole interaction in halogen dimers of transition and non-transition elements. Russ. J. Coord. Chem. 2000. 26(11): 834.

Nxumalo L.M., Ford T.A. On the energetics of the dimerization of boron trifluoride. J. Mol. Struct. Theochem. 1995. 357(1-2): 59. https://doi.org/10.1016/0166-1280(95)04268-B

Saboungi M.-L., Howe M.A., Price D.L. Structure and dynamics of molten aluminium and gallium trihalides. I. Neutron diffraction. Mol. Phys. 1993. 79(4): 847. https://doi.org/10.1080/00268979300101671

Alvarenga A.D., Saboungi M.-L., Curtiss L.A., Grimsditch M., Mc Neil L.E. Structure and dynamics of molten aluminum and gallium trihalides. II. Raman spectroscopy and ab initio calculations. Mol. Phys. 1994. 81(2): 409. https://doi.org/10.1080/00268979400100271

Ystenes M., Westberg N., Ehrhardt B.K. Ab initio quantum mechanical vibrational analysis of the dimeric A2X6 molecules (A = Al, Ga; X=Cl, Br, I). Spectrochim. Acta A. 1995. 51(6): 1017. https://doi.org/10.1016/0584-8539(94)01299-V

Laarset K., Shen Q., Thomassen H., Richardson A.D., Hedberg K. Molecular structure of the aluminum halides, Al2Cl6, AlCl3, Al2Br6, AlBr3, and AlI3, obtained by gas-phase electron-diffraction and ab initio molecular orbital calculations. J. Phys. Chem. A. 1999. 103(11): 1644.

Williams S.D., Harper W., Mamantov G., Tortorelly L.J., Shankle G. Ab initio MO study of selected aluminum and boron chlorides and fluorides: comparison with 11B NMR spectra of a tetrachoroborate melt. J. Comput. Chem. 1996. 17(15): 1686. https://doi.org/10.1002/(SICI)1096-987X(19961130)17:15<1696::AID-JCC2>3.0.CO;2-K

Hargittai M., Schulz A., Réffy B., Kolonits M. Molecular structure, bonding, and Jahn-Teller effect in gold chlorides: quantum chemical study of AuCl3, Au2Cl6, AuCl4-, AuCl, and Au2Cl2 and electron diffraction study of Au2Cl6. J. Amer. Chem. Soc. 2001. 123(7): 1449. https://doi.org/10.1021/ja003038k

Réffy B., Kolonits M., Schulz A., Klapötke T.M., Hargittai M. Intiguing gold trifluoride - molecular structure of monomers and dimers: an electron diffraction and quantum chemical study. J. Amer. Chem. Soc. 2000. 122(13): 3127. https://doi.org/10.1021/ja992638k

Chandler W.D., Johnson K.E. Thermodynamic calculations for reactions involving hydrogen halide polymers, ions, and Lewis acid adducts. 3. Systems constituted from Al3+, H+, and Cl-. Inorg. Chem. 1999. 38(9): 2050. https://doi.org/10.1021/ic980640r

Shlykov S.A., Zakharov A.V., Girichev G.V. Structure of molecules ScBr3 and Sc2Br6 due to data of synchronic electronographic and mass-spectrometry experimens, and quantum chemical calculations. J. Struct. Chem. 2007. 48(10): 54. https://doi.org/10.1007/s10947-007-0008-x

Zhang Yu., Zhao Jianying, Tang Guodong, Zhu Longgen. Ab initio and DFT studies on vibrational spectra of some halides of group IIIB elements. Spectrochim. Acta A. 2005. 62(1-3): 1. https://doi.org/10.1016/j.saa.2004.11.042

Solomonik V.G., Smirnov A.N. Structure and energy stability of dimeric molecules of lanthanum and luthethium. J. Struct. Chem. 2005. 46(6): 1013 https://doi.org/10.1007/s10947-006-0230-y

Kovács A. Theoretical study of the rare earth trihalide dimers Ln2X6 (Ln = La, Dy; X = F, Cl, Br, I). Chem. Phys. Lett. 2000. 312(3-4): 238. https://doi.org/10.1016/S0009-2614(00)00146-9

Troyanov S.I. Crystal structure of aluminum tribromide and triiodide. Russ. J. Inorgan. Chem. 1994. 39(4): 552.

Troyanov S.I., Krahl Th., Kemnitz E. Crystal structures of GaX3 (X = Cl, Br, I) and AlI3. Z. Kristallogr. 2004. 219: 88. https://doi.org/10.1524/zkri.219.2.88.26320

Webb S.P., Gordon M.S. Intermolecular self-interactions of the titanium tetrahalides TiX4 (X = F, Cl, Br). J. Amer. Chem. Soc. 1999. 121(11): 2552. https://doi.org/10.1021/ja983339i

Timoshkin A.Yu. Oligomerization of gaseous aluminum, gallium and indium trihalogenides: quantum chemical study. Russ. J. Inorgan. Chem. 2008. 53(2): 296. https://doi.org/10.1134/S0036023608020162

Timoshkin A.Yu. Structure and stability of oligomeric anions [MnXn+1]- (M = Al, Ga, In; X = F, Cl, Br, I; n = 2-4) : quantum chemical study. Russ. J. Inorgan. Chem. 2009. 54(1): 87. https://doi.org/10.1134/S0036023609010161

Backhaus K.-O. 0D Interpretation of the crystal structure of TeCl4. Kristall und Technik. 1979. 14(9): 1157. https://doi.org/10.1002/crat.19790140919

Kniep R., Beister H.-J., Wald D. Polymorphie von Tellur(IV)-iodid. Z. Naturforsch. 1988. 43b: 966. https://doi.org/10.1515/znb-1988-0810

Brooke J.D.H., Klossing I., Passmore J., Raafe I. A computational study of SbnF5n (n = 1-4) implications for the fluoride ion affinity of. J. Fluor. Chem. 2004. 125(11): 1585. https://doi.org/10.1016/j.jfluchem.2004.09.016

Voit V.I., Voit A.V., Goncharuk V.K., Sergienko V.I. Quantum chemical study of molybdenum pentafluoride structure. J. Struct. Chem. 1999. 40(3): 459. https://doi.org/10.1007/BF02700632

Voit V.I., Voit A.V., Goncharuk V.K., Sergienko V.I. Quantum chemical study of niobium pentafluoride geometry and electron structure. J. Struct. Chem. 1999. 40(4): 623. https://doi.org/10.1007/BF02700711

Gong L., Li Q., Xu W., Xie Y., Schaefer H.F. (III). Novel interhalogen molecules: structures, thermochemistry, and electron affinities of dibromine fluorides Br2Fn / Br2Fn- (n = 1 - 6). J. Phys. Chem. A. 2004. 108(16): 3598. https://doi.org/10.1021/jp031311+

Martyniuk E.G., Pashinnik V.E., Markovskiy L.N., Kachkovskiy A.D. Study of structure of chalcogens fluorides and of their associates by means of quantum chemical modeling. Russ. J. Gen. Chem. 1999. 69(8): 1322.

Minyaev R.M. Fast synchronic exchange of fluorine atoms in donor-acceptor complexes of interhalogens (XF3)2 (where X = Cl, Br, I) and (FH)2…ClF3. Russ. J. Phys. Chem. 2000. 74(1): 110.

Matito E., Poafer J., Bickelhaupt F.M., Solà M. Bonding in methylalkali metals (CH3M)n (M = Li, Na, K; n = 1, 4). Agreement and divergences between AIM and ELF analyses. J. Phys. Chem. B. 2006. 110(14): 7189. https://doi.org/10.1021/jp057517n

Kwon O., Sevin F., McKee M.L. Density functional calculations of methyllothium, t-butyllithium, and phenyllithium oligomers: effect of hyperconjugation on conformation. J. Phys. Chem. A. 2001. 105(5): 913. https://doi.org/10.1021/jp003345c

Berthomieu D., Basquet Y., Podocehi L., Goursot A. Trimethylaluminum dimer structure and its monomer radical cation: a density functional study. J. Phys. Chem. A. 1998. 102(40): 7821. https://doi.org/10.1021/jp980148t

Willis B.G., Jensen K.F. Gas-phase reaction pathways of aluminum organometallic compounds with dimethylaluminum hydride and alane as model systems. J. Phys. Chem. A. 2000. 104(33): 7881. https://doi.org/10.1021/jp000967p

Verstraete P., Deffieux A., Fritsch A., Rayez J.C., Rayez M.T. Theoretical study of a series of alkyllithium clusters. J. Mol. Struct. Theochem. 2003. 631(1-3): 53. https://doi.org/10.1016/S0166-1280(03)00133-7

Boldyrev A.I., Simons J. Polyhedral ionic molecules. J. Amer. Chem. Soc. 1997. 119(20): 4618. https://doi.org/10.1021/ja964063m

Minyaev R.M. Ab initio study of thermodynamic stability and structure of cage molecules B4N4H8 and Be4O4H8. J. Struct. Chem. 2000. 41(1): 3. https://doi.org/10.1007/BF02684721

Nigam S., Majumder Ch., Kulsh-reshtha S.K. Ab initio molecular orbital theory of hydrogenation of LiAl and Li2Al2: the magic clusters (LiAlH4) and (LiAlH4)2. Phys. Rev. B. 2006. 73(11): 115424.

Doriat C., Köppe R., Baum E., Stösser G., Köhnlein H, Schnöckel H. Molecular lattice fragment of LiI. Crystal structure and ab initio calculations of [LiI(NEt3)]4. Inorgan. Chem. 2000. 39(7): 1534. https://doi.org/10.1021/ic9903432

Charkin O.P. Theoretical study of tetrahydridoborates of light metals. Russ. J. Inorgan. Chem. 2007. 52(11): 1856. https://doi.org/10.1134/S0036023607110198

Charkin O.P. Theoretical study of tetrahydroalanates of light metals. Russ. J. Inorgan. Chem. 2007. 52(12): 2039. https://doi.org/10.1134/S0036023607120200

Charkin O.P. Theoretical study of tetrahydridoborates and alanates L(MH4)3, HL(MH4)2 and H2L(MH4) (L = Be, Mg, Al, Sc, Ti, V, Zn; M = B, Al). Russ. J. Inorgan. Chem. 2008. 53(12): 2041. https://doi.org/10.1134/S0036023608120127

Zyubin A.S., Charkin O.P., Schloyer P.F.R. Quantum chemical study of structure and stability of lithium alumohydride dimer [LiAlH4]2. Russ. J. Inorgan. Chem. 1993. 38(8): 1400.

Charkin O.P., Klimenko N.M., McKee M.L. Non-empirical study of isomery, structure and stability of dimeric molecules of berrilate salts (LiBeH3)2, (LiBeF3)2 and their fragments. Russ. J. Inorgan. Chem. 2000. 45(5): 843.

Charkin O.P., Klimenko N.M., McKee M.L. Non-empirical study of isomery, structure and stability of dimeric molecules of berrilate salts (LiMgH3)2, (LiMgF3)2 and their fragments. Russ. J. Inorgan. Chem. 2000. 45(6): 979.

Rykova E.A., Klimenko N.M. Theoretical study of structure and stability of oxoberillohydride complexes OBe∙nBeH2 (n = 1-3). Russ. J. Inorgan. Chem. 1995. 40(11): 1879.

Troyanov S.I., Tikhomirov G.A., Znamenkov K.O., Morozov I.V. Crystal structure of berillium nitrate complexes (NO)2[Be(NO3)4] and Be4O(NO3)6. Russ. J. Inorgan. Chem. 2000. 45(12): 1941.

Krivovichev S.V., Filatov S.K., Semenova T.F. Types of cationic complexes based on oxocentered tetrahedra in crystal structures of inorganic compounds. Uspekhi khimii. 1998. 67(2): 155. [In Russian]. https://doi.org/10.1070/RC1998v067n02ABEH000287

Casarin M., Maccato Ch., Vittadini A. A comparative theoretical investigation of three sodalite systems: Cd4S(AlO2)6, Zn4O(BO2)6, and Zn4S(BO2)6. J. Phys. Chem. B. 2002. 106(10): 2569.

Mebel A.M., Klimenko A.M., Charkin O.P. Theoretical study of structure and stability of berillohydride clusters (BeH)k (k = 2, 4, 6), A(BeH)4 and A(BeH)6. Russ. J. Inorgan. Chem. 1991. 36(3): 741.

Tarasov Yu.I., Bazhanova Z.G., Kovtun D.M., Boltalin A.I., Novosadov B.K. Quantum chemical study of silver trifluoroacetate dimer. J. Struct. Chem. 2008. 49(2): 221. https://doi.org/10.1007/s10947-008-0116-2

Panteleyev I.A., Semenov S.G., Glebovskiy D.N. Nature of bridge bonds in dimers of lithium and potassium acetates. Russ. J. Gen. Chem. 2005. 75(9): 1479. https://doi.org/10.1007/s11176-005-0438-0

Kiseleva E.A., Besedin D.V., Korenev Yu.M. Structure of dimer and tetramer of sodium trimethylacetate in gas phase. Russ. J. Phys. Chem. 2005. 79(9): 1658.

Prokuda O.V., Belosluzov V.R., Igumenov I.K., Stabnikov P.A. Calculations of energy of van der Waals interaction by AAP method in crystals of Al, Cr, Fe and Ir acethylacetonates. J. Struct. Chem. 2006. 47(6): 1043. https://doi.org/10.1007/s10947-006-0422-5

Bullen G.J., Mason R., Pauling P. The crystal and molecular structure of bis(acetylacetonato) nickel(II). Inorg. Chem. 1965. 4(4): 456. https://doi.org/10.1021/ic50026a005

Shibata S., Ohta M., Tani R. Molecular structure of bis(acetylacetonato)nickel(II) in the gas phase as determined from electron diffraction data. J. Mol. Struct. 1981. 73(1): 119. https://doi.org/10.1016/0022-2860(81)85054-5

Slabzhennikov S.N., Dolzhenko L.A., Litvinova O.B. Calculation of normal vibrations of cromium tris-malondialdehyde complex. Russ. J. Coord Chem. 2001. 27(2): 131. https://doi.org/10.1023/A:1009531417197

Kazachek M.V., Vovna V.I. Modeling electron absorption and photoionization spectra of Sc and Ti tris-acethylacetonatesт by Хα - DV method. Russ. J. Coord. Chem. 2001. 27(2): 117.

Sliznev V.V., Lapshina S.B., Girichev G.V. Non-empirical study of geometrical structure and energy stability of dimers of ittrium β-diketonates Y2(MDA)6 and Y2(НFA)6. J. Struct. Chem. 2007. 48(5): 857. https://doi.org/10.1007/s10947-007-0121-x

Starikova A.A., Starikov A.G., Minkin V.I. DFT computational insight into the mechanism of the monomer-trimer isomerism of Ni(II) bis-acetylacetonate. Inorganica Chimica Acta. 2020. 517: 120183. https://doi.org/10.1016/j.ica.2020.120183

Minkin V.I., Minyaev R.M. Hypercoordinate carbon in polyhedral organic structures. Mendeleev Communs. 2004. 14(2): 43. https://doi.org/10.1070/MC2004v014n02ABEH001911

Minyaev R.M., Gribanova T.N., Minkin V.I. Hexacoordinated carbon in boroorganic carcasus. Doklady (RAN). 2004. 396(5): 628. [In Russian]. https://doi.org/10.1023/B:DOCH.0000033728.00565.fe

Gapurenko O.A., Gribanova T.N., Minyaev R.M., Minkin V.I. Octacoordinated carbon atom in tetra(metalamino)methanes CN4M4 (M = Be, Mg, Ca): Quantum chemical study. Russ. J. Organ. Chem. 2007. 43(5): 690. https://doi.org/10.1134/S1070428007050090

Gapurenko O.A., Minyaev R.M., Minkin V.I. Theoretical design of new sandwich compounds of boron, carbon, nitrogen and oxygen. Russ. J. Gen. Chem. 2009. 79(4): 564. https://doi.org/10.1134/S1070363209040094

Gribanova T.N., Minyaev R.M., Minkin V.I. Sandwich-like compounds of first-row period: quantum chemical study. Izv. AN. Ser. Chem. 2006. (11): 1825. [In Russian]. https://doi.org/10.1007/s11172-006-0530-6

Minyaev R.M., Grsbanova T.N., Starikov A.G., Gapurenko O.A., Minkin V.I. Octacoordinated carbon in boron-carbon carcasus. Doklady (RAN). 2005. 404(5): 632. [In Russian]. https://doi.org/10.1007/s10631-005-0070-x

Minyaev R.M., Starikov A.G., Avakyan V.E., Minkin V.I. Hexacoordinated carbon and nitrogen atoms in contimuous boroorganic carcasus structures. Doklady (RAN). 2007. 416(4): 486. [In Russian]. https://doi.org/10.1134/S0012500807100011

Gribanova T.N., Minyaev R.M., Minkin V.I. Hypercoordinated oxygen and fluorine atoms in boroorganic carcasus. Doklady (RAN). 2007. 412(1): 62. [In Russian]. https://doi.org/10.1134/S0012500807010016

Gribanova T.N., Minyaev R.M., Minkin V.I. Non-classic systems with two hypercoordinated atoms in polyhedral carcasus. Doklady (RAN). 2008. 418(2): 198. [In Russian]. https://doi.org/10.1134/S0012500808010047

Gorobtsova O.N. Non-standard configuration of chemical bonds and hypercoordination of the first-row elements: Abstr. Thesis for Dr. Sci. (Chem.). / Institute of phys. and organ. chem. of Rostov state univ. (Rostov-on-Don, 2007).

Gapurenko O.A. Hypercoordination of the first-row elements in organic and organometalic compounds: Abstr. Thesis for Ph. D. (Chem.). / Institute of phys. and organ. chem. of Rostov state univ. (Rostov-on-Don, 2007).

Earley C.W. Calculation of the relative stability of molecular alumoxanes. J. Mol. Struct. Theochem. 2007. 805(1-3): 101. https://doi.org/10.1016/j.theochem.2006.10.030

Marie-Madeleine Rohmer M.-M., Marc Bénard M., Josep-M. Poblet J.-M. Structure, Reactivity, and Growth Pathways of Metallocarbohedrenes M8C12 and Transition Metal/Carbon Clusters and Nanocrystals: A Challenge to Computational Chemistry. Chem. Rev. 2000. 100(2): 495. https://doi.org/10.1021/cr9803885

Khan A. Isomers of neutral Ti met-car: A theoretical study. J. Phys. Chem. 1995. 99(14): 4923. https://doi.org/10.1021/j100014a009

Domingos H.S. Computational study of Met-Car analogue heterofullerenes. Modelling and Simulation in Materials Science and Engineering. 2006. 14(4): 637. https://doi.org/10.1088/0965-0393/14/4/007

Опубліковано
2022-11-30
Як цитувати
Гребенюк, А. Г. (2022). Структури острівного типу з гіперкоординованими атомами. Поверхня, (14(29), 3-36. https://doi.org/10.15407/Surface.2022.14.003
Розділ
Теорія хімічної будови і реакційної здатності поверхні.