Гібридні наноматеріали на основі вуглецю: огляд та перспективи

  • O. Ю. Семчук Інститут хімії поверхні ім. О.О.Чуйка Національної академії наук України / Центр нових технологій Варшавського університету
  • Т. Гатті Політехніка Торіно
  • С. Оселла Центр нових технологій Варшавського університету / Каліфорнійський Технологічний Інститут
Ключові слова: вуглецеві наноструктури, графенові квантові точки, малі органічні напівпровідники, матеріали на основі графену, , вуглецуві нанотрубки, вуглецуві нанотрубки, вуглецеві нанострічки, нано будівельні блоки, гетеронанопереходи, поллинання/випромінювання світла, екситони Френкеля та Ваньє-Мотта, оптоелектроніка

Анотація

В останні роки було розроблено та підготовлено багато нових матеріалів для покращення продуктивності роботи оптоелектричних приладів. Зараз стає актуальною проблема стабільності тривалої роботи різноманітних оптико-електронних пристроїв на основі органічних матеріалів, як спряжених полімерів, так і малих молекул органічних напівпровідників. Одним із способів вирішення цієї проблеми є використання вуглецевих наноструктур, таких як вуглецеві нанотрубки та велике сімейство матеріалів на основі графену, які мають підвищену стабільність, у ретельно розроблених наногібридних або нанокомпозитних архітектурах, які можна інтегрувати у фоточутливі шари та де їх потенціал ще не розкритий повністю. Останнім часом у цьому напрямку спостерігається нова тенденція – використання нанорозмірних матеріалів, перш за все, для перетворення світла в електрику. Основна мета цього підходу полягає в раціональному проектуванні стабільних і високоефективних гібридних наноматеріалів на основі вуглецю для оптоелектричних застосувань, а саме збору світла/перетворення електроенергії, які можуть бути реалізовані в реальних оптоелектричних пристроях. У цьому огляді ми обговоримо теоретичні та експериментальні основи гібридизації вуглецевих наноструктур з іншими матеріалами для виявлення нових оптоелектронних властивостей і надамо огляд існуючих прикладів у літературі, які спрогнозують цікаві майбутні перспективи для використання в майбутніх пристроях.

Посилання

Zeng M., Zhang Y. Colloidal nanoparticle inks for printing functional devices: emerging trends and future prospects. J. Mater. Chem. A. 2019. 7: 23301. https://doi.org/10.1039/C9TA07552F

Zhao N., Yan L, Zhao X., Chen X., Li A., Zheng D., Zhou X., Dai X., Xu F.-J. Versatile types of organic/inorganic nanohybrids: from strategic design to biomedical applications. Chem. Rev. 2019. 119: 1666. https://doi.org/10.1021/acs.chemrev.8b00401

Guan G., Han M.-Y. Functionalized hybridization of 2D nanomaterials. Adv. Sci. 2019. 6:1901837. https://doi.org/10.1002/advs.201901837

Gatti T., Vicentini N., Mba M., Menna E. Organic functionalized carbon nanostructures for functional polymer-based nanocomposites. Eur. J. Org. Chem. 2016. 2016: 1071. https://doi.org/10.1002/ejoc.201501411

Lee S., Choi M.-J., Sharma G., Biondi M., Chen B., Baek S.-W., Najarian A.M., Vafaie M., Wicks J., Sagar L.K., Hoogland S., de Arquer F.P.G., Voznyy O., Sargent E. H. Orthogonal colloidal quantum dot inks enable efficient multilayer optoelectronic devices. Nat. Commun 2020. 11: 4814.

Osella S., Wang M., Menna E., Gatti T. Lighting-up nanocarbons through hybridization: Optoelectronic properties and perspectives. Optical Materials. 2021. X12: 100100. https://doi.org/10.1016/j.omx.2021.100100

Hu G., Kang J., Ng L.W.T., Zhu X., Howe R.C.T., Jones C.G., Hersam M.C., Hasan T. Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 2018. 47: 3265. https://doi.org/10.1039/C8CS00084K

Jariwala D., Sangwan V.K., Lauhon L.J., Marks T.J., Hersam M.C. Carbon nanomaterials for electronics, optoelectronics, photovoltaics and sensing. Chem.Soc.Rev.2013. 42: 2824. https://doi.org/10.1039/C2CS35335K

Gatti T., Casaluci S., Prato M., Salerno M., Di Stasio F., Menna E. A., Da Carlo A., Bonaccorso F. Boosting Perovskite Solar Cells Performance and Stability through Doping a Poly-3(hexylthiophene) Hole Transporting Material with Organic Functionalized Carbon Nanostructures. Adv. Func.Mat.2016. 26: 7443. https://doi.org/10.1002/adfm.201602803

Schroeder V., Savagatrup S., He M., Lin S., Swager T.M. Carbon nanotube chemical sensors. Chem. Rev. 2019. 119: 599. https://doi.org/10.1021/acs.chemrev.8b00340

Wieland L., Li H., Rust C., Chen J., Flavel B.S. Carbon nanotubes for photovoltaics: from lab to industry. Adv. Energy Mater. 2021. 11: 2002880, https://doi.org/10.1002/aenm.202002880

Bacon M., Bradley S.J., Nann T. Graphene quantum dots. Part. Part. Syst. 2014. 31: 415. https://doi.org/10.1002/ppsc.201300252

Anichini C., Samorì P. Graphene-based hybrid functional materials. Small. 2021. 17: 2100514. https://doi.org/10.1002/smll.202100514

Stergiou A., Tagmatarchis N. Interfacing carbon dots for charge-transfer processes. Small. 2021. 17: 200605.

Guldi D.M., Costa R.D. Nanocarbon hybrids: the paradigm of nanoscale self-ordering/self-assembling by means of charge transfer/doping interactions. J. Phys. Chem. Lett. 2013. 4:1489. https://doi.org/10.1021/jz4001714

Shearer C.J., Cherevan A., Eder D. Application and future challenges of functional  nanocarbon hybrids. Adv. Mater. 2014. 26: 2295. https://doi.org/10.1002/adma.201305254

Zhan Y., Mei Y., Zheng L. Materials capability and device performance in flexible electronics for the Internet of Things. J. Mater. Chem. C. 2014. 2: 1220. https://doi.org/10.1039/C3TC31765J

Miraz M.H., Ali M., Excell P.S., Picking R. Internet of nano-things, things and everything: future growth trends. Future Internet . 2018.10: 68. https://doi.org/10.3390/fi10080068

Tian P., Tang L., Teng K.S.,. Lau S.P. Graphene quantum dots from chemistry to applications. Mater. Today Chem. 2018. 10: 221. https://doi.org/10.1016/j.mtchem.2018.09.007

Ozhuki V. M., Pillai V.K., Alwarappan S. Spotlighting graphene quantum dots and beyond: synthesis, properties and sensing applications. Appl. Mater. Today. 2017. 9: 350. https://doi.org/10.1016/j.apmt.2017.09.002

Paterno G.M., Goudappagouda C. Q., Lanzani F. G., Scotognella A. Large polycyclic aromatic hydrocarbons as graphene quantum dots: from synthesis to spectroscopy and pho-tonics. Adv. Opt. Mater. 2021. 9: 2100508. https://doi.org/10.1002/adom.202100508

Javed N., O'Carroll D.M. Carbon dots and stability of their optical properties. Part. Part. Syst. Char. 2021. 38: 2000271. https://doi.org/10.1002/ppsc.202000271

Zhing L., Xhung X., Lin C., Cui H., Shen L., Guo W. Toward efficient carbon-dots-based electron-extraction layer through surface charge engineering. Appl. Mat. Interfaces. 2018. 10(46): 40255. https://doi.org/10.1021/acsami.8b13523

Osella S., Knippenberg S. Environmental effects on the charge transfer properties of Graphene quantum dot based interfaces. Int. J. Quant. Chem. 2019. 119: 25882. https://doi.org/10.1002/qua.25882

Takase, T. Narita, W. Fujita, M.S. Asano, T. Nishinaga, H. Benten, K. Yoza, K. Müllen, Pyrrole-fused Azacoronene family: the influence of replacement with dialkoxybenzenes on the optical and electronic properties in neutral and oxidized states. J. Am. Chem. Soc. 2013. 135: 8031. https://doi.org/10.1021/ja402371f

G'onka E., Chmielewski P.J., Lis T., Stępien M. Expanded hexapyrrolohexaazacoronenes. Near-infrared absorbing chromophores with interrupted peripheral conjugation. J. Am. Chem. Soc. 2014. 136: 16399. https://doi.org/10.1021/ja508963v

Privitera A., Righetto M., Mosconi D., Lorandi F., Isse A.A., Moretto A., Bozio R., Ferrante C., Franco L. Boosting carbon quantum dots/fullerene electron transfer via surface group engineering. Phys. Chem. Chem. Phys. 2016.18: 31286. https://doi.org/10.1039/C6CP05981C

Miao S., Liang K., Zhu J., Yang B., Zhao D., Kong B. Hetero-atom-doped carbon dots: doping strategies, properties and applications. Nano Today.2020. 33: 100879. https://doi.org/10.1016/j.nantod.2020.100879

Mishra A., Buerle P. Small Molecule Organic Semiconductors on the Move: Promises for Future Solar Energy Technology. Angew. Chem. Int. Ed. 2012. 51: 2020. https://doi.org/10.1002/anie.201102326

Nanot S., Erik H., Hároz, Kim Ji-Hee, Robert H. Hauge, Kono J. Optoelectronic Properties of Single-Wall Carbon Nanotubes. Adv.Matter.2012. 24: 4977. https://doi.org/10.1002/adma.201201751

Li H., Zhang X. Directional crystallization of polymer molecules through solvent annealing on a patterned substrate. Opt Express. 2015. 23: 8422. https://doi.org/10.1364/OE.23.008422

Ameri T., Dennler G., Lungenschmied C., Brabec C.J. Organic tandem solar cells: A review. Energy Environ. Sci. 2009, 2: 347. https://doi.org/10.1039/b817952b

Milvich J., Zaki Z., Aghamohammadi M., Rödel R., Kraft U., Klauk H., N. Burghartz J.N. Flexible low-voltage organic phototransistors based on air-stable binaphthol[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT). Org. Electron. 2015. 20: 63 https://doi.org/10.1016/j.orgel.2015.02.007

Singth S., Matsui H., Tokito S. Flexible low-voltage organic thin-film transistors and PMOS inverters: the effect of channel width on noise margin. J. Phys .D: Appl. Phys. 2016. 120: 045501.

Chu Y., Wu X., Liu D., Chu Y., Wang K., Yang B., Huang J. Light-Stimulated Synaptic Devices Utilizing Interfacial Effect of Organic Field-Effect Transistors. Adv. Sci. 2015. 3: 1500435 https://doi.org/10.1002/advs.201500435

Duche D., Torchio P., Escoubas L., Monestier F., Simon J.-J., Flory F., Mathian G. Improving light absorption in organic solar cells by plasmonic contribution. Solar Energy Materials & Solar Cells. 2009. 93 :1377. https://doi.org/10.1016/j.solmat.2009.02.028

Song P., Li Y., Fengcai M. F., Pullerits T., Peng S.M. Photoinduced Electron Transfer in Organic Solar Cells. Chem. Rec. 2016. 16: 734. https://doi.org/10.1002/tcr.201500244

Pierre A., Arias K. Solution-processed image sensors on flexible substrates. Flex. Print. Electron. 2016. 1: 043001. https://doi.org/10.1088/2058-8585/1/4/043001

Gatti T., Lamberti F., Cescin E., Sorrentino R., Rizzo A., Menna E., Meneghesso G., Meneghetti M., Retrozza A. Evidence of Spiro-Ome TAD De-doping be ter-Butylpuridine on Hole-Transporting Layes for Perovskite Solar Cells. Chem. 2019. 5: 1806. https://doi.org/10.1016/j.chempr.2019.04.003

Nannot S., Hároz E.H., Kim J.-H., Robert H. Hauge R.H., Kono J. Optoelectronic Properties of Single-Wall Carbon Nanotubes. Adv. Matter. 2012. 24: 4977. https://doi.org/10.1002/adma.201201751

Loi M.A., Gao J., Cordella F., Blondeau P., Menna E., Bartova B., Hebert C., Lazar S., Botton G.A., Milko M., Ambrosch-Draxl C. Encapsulation of Conjugated Oligomers in Single-Walled Carbon Nanotubes: Towards Nanohybrids for Photonic Devices. Adv. Matter. 2010. 22: 1635. https://doi.org/10.1002/adma.200903527

Balci M., Heimfarth D., Leinen M.B., Klein P., Allard S., Scherf U., Zaumsei J. Enhancing Electrochemical Transistors Based on Polymer-Wrapped (6,5) Carbon Nanotube Networks with Ethylene Glycol Side Chains. Adv. Electron. Matter. 2020. 6: 2000717.

Berger F., Lüttgens J.J., Nowack J., Kurtsh T., Kidental S., Kistner L., Muller C.C., Bongartz L.M., Lumsargis V.A., Zakharko Yu., Zamseli J. Brightening of Long, Polymer-Wrapped Carbon Nanotubes by sp3 Functionalization in Organic Solvents. ACS Nano. 2019. 13: 9259. https://doi.org/10.1021/acsnano.9b03792

Brozena A., Leeds J.D., Zhang Y., Fourkas J.T., Wang Yu.H. Controlled Defects in Semiconducting Carbon Nanotubes Promote Efficient Generation and Luminescence of Trions. ACS Nano. 2014. 8: 4239. https://doi.org/10.1021/nn500894p

Shiraki T., Onitsuka H., Shiraishi T., Nakashima N. Near infrared photoluminescence modu-lation of single-walled carbon nanotubes based on a molecular recognition approach. Chem. Comm. 2016. 52: 12972. https://doi.org/10.1039/C6CC07287A

Ernst F., Heek T., Setaro A., Haag R., Reich S. Energy Transfer in Nanotube-Perylene Com-plexe. Adv. Func. Mater. 2012. 22: 3921. https://doi.org/10.1002/adfm.201200784

Tasis D., Tagmatarchis N., Bianco A., Prato M.. Chemistry of carbon nanotubes. Chem. Rev. 2006. 106: 1105. https://doi.org/10.1021/cr050569o

Celis A., Nair M.N., Taleb-Idrahimi A., Conrad E.H., Berger C., de Heer W.A., Tejeda A. Graphene nanoribbons: fabrication, properties, and devices. J. Phys.D: Appl.Phys. 2016. 49: 143001. https://doi.org/10.1088/0022-3727/49/14/143001

Narita A., Feng X., Müllen K. Bottom-up synthesis of chemically precise graphene nanoribbons. Chem. Rec. 2015. 15: 295. https://doi.org/10.4414/pc-f.2015.00917

Osella S., Narita A., Schwab M.G., Hernandez Y., Feng X., Müllen K., Beljonne D. Graphene nanoribbons as low band gap donor materials for organic photovoltaics: quantum chemical aided design. ACS Nano. 2012. 6: 5539. https://doi.org/10.1021/nn301478c

Chen Z., Narita A., Müllen K. Graphene nanoribbons: on-surface synthesis and integration into electronic devices. Adv. Mater. 2020. 32: 2001893. https://doi.org/10.1002/adma.202001893

Saraswat V., Jacobberger R.M., Arnold M.S. Materials science challenges to graphene nanoribbon electronics. ACS Nano. 2021. 15: 3674. https://doi.org/10.1021/acsnano.0c07835

Wang H., Wang H.S., Ma C., Chen L., Jiang C., Chen C., Xie X., Li A.-P., Wang X. Gra- phene nanoribbons for quantum electronics. Nature Review. 2021. 3: 791. https://doi.org/10.1038/s42254-021-00370-x

Chen L., Hernandez Y., Feng X., Mllen K. From Nanographene and Graphene Nanoribbons to Graphene Sheets: Chemical Synthesis. Angew. Chem. Int. Ed. 2012. 51: 7640. https://doi.org/10.1002/anie.201201084

Brey L., Fertig H. A. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B. 2006. 73: 235411.

Yang L., Park C.H., Son Y.-W., Cohen M.L., Steven G. Louie S.G. Quasiparticle Energies and Band Gaps in Graphene Nanoribbons. Phys. Rev. Letters. 2007. 99: 186801.

Wakabayashi K., Sasaki K., Nakanishi T., Enoki T. Electronic states of graphene nanoribbons and analytical solutions. Sci. Technol. Adv. Mater. 2010. 11: 54504.

Yang L., Ma J., Osella S., Droste J., Komber H., Liu K., Boskmann S., Beljonne D., Hansen M.R., Bonn M., Wang H.I., Liu J., Feng X. Solution, Synthesis and Characterization of a Long and Curved Graphene Nanoribbon with Hybrid Cove-Armchair-Gulf Edge Structures. Advanced Sci. 2022. 9: 2200708. https://doi.org/10.1002/advs.202200708

Wang X., Ma J., Zheng W., Osella S., Arisnabarreta N., Droste J., Serra G., Ivasenko O., Lucotti A., Beljonne D., Bonn M., Liu X., Hansen M.R., Tommasini M., De Feyter S., Liu J., Wang H.I. Cove-Edged Graphene Nanoribbons with Incorporation of Periodic Zigzag-Edge Segments. Jor. Am. Chem. Soc. 2022. 144: 228. https://doi.org/10.1021/jacs.1c09000

Yao X., Zheng W., Osella S., Qiu Z., Fu Shuai., Schollmeyer D., Muller B., Beljone D., Bonn M., Wang H.I., Muller K., Narita A. Synthesis of Nonplanar Graphene Nanoribbon with Fjord Edges. Jor. Am. Chem. Soc. 2021. 143: 5654. https://doi.org/10.1021/jacs.1c01882

Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films. Science. 2004. 306: 666. https://doi.org/10.1126/science.1102896

Novoselov K.S., Mischenko A., Cavallho A., Castro Neto A.H. 2D materials and van der Waals heterostructures. Science. 2016. 353: aac9439.

McCreary A., Kazakova O., Jarivala D., Balushi Z.Y. An outlook into the flat and 2D materials beyond graphene: synthesis, properties and devices applications. 2D mater. 2020. 8: 13001. https://doi.org/10.1088/2053-1583/abc13d

Wang H.-X, Wang O., Zhou K.-G., Zhang H.-L. Graphene in light: design, synthesis and applications of photo-active graphene and graphene like materials. Small. 2013. 9: 1266. https://doi.org/10.1002/smll.201203040

Strauss V., Roth A., Secita M., Guldi D.M. Efficient energy-conversion materials for the future: understanding and tailoring charge-transfer processes in carbon nanostructures. Chem. 2016. 1: 531. https://doi.org/10.1016/j.chempr.2016.09.001

Gatti T., Menna F. Use of carbon nanostructures in hybrid photovoltaic devices. In: Photoenergy Thin Film Mater. (NJ: Hoboken, John Wiley & Sons, Inc., 2019).

Avouris P., Freitag M., Perebeinos V. Carbon-nanotube photonics and optoelectronics. Nat. Photonics.2008. 2: 341. https://doi.org/10.1038/nphoton.2008.94

Graf A., Murawski C., Zakharko Yu., Zaumseil J., C. Gather M.C. Infrared Organic Light-Emitting Diodes with Carbon Nanotube Emitters. Adv. Mater. 2018. 30: 1706711. https://doi.org/10.1002/adma.201706711

He X., Htoon H., Doorn S.K., Pernice W.H.W., Pyatkow F., Krupke R., Jeantet A., Chassagneuz Y., Voisin C. Carbon nanotubes as emerging quantum-light sources. Nature Mate- rials. 2018. 17: 663. https://doi.org/10.1038/s41563-018-0109-2

Misak H.E., Asmatulu R., O'Malley M., Jurac E., Mall S. Functionalization of carbon nanotube yarn by acid treatment. Int. Jor. Smart Nano Mat. 2014. 5: 34. https://doi.org/10.1080/19475411.2014.896426

Ahmad A., Kern K., Balasubramanian K. Selective Enhancement of Carbon Nanotube Photoluminescence by Resonant Energy Transfer. Chem. Phys. Chem. 2009. 10: 905. https://doi.org/10.1002/cphc.200800796

Roquelet C., Garrot D., Lauret J.S., Voisin C., Alain-Rizzo V., Delaire J.A. E. Diameter-selective non-covalent functionalization of carbon nanotubes with porphyrin monomers. Appl. Phys. Lett. 2010. 97: 141918.

Glaeske M., Juergensen S., Gabrielli L., Menna E., Mancin F., Gatti T., Setaro A. Plasmon-Assisted Energy Transfer in Hybrid Nanosystems. Phys. Status Solidi RRL. 2018. 12: 1800508. https://doi.org/10.1002/pssr.201800508

Niu W., Ma J., Soltani P., Zheng W., Liu F., Popov A.A., Weigand J.J., Komber H., Poliani E., Casiraghi C., Droste J., Hansen M.R., Osella S., Beljonne D., Bonn M., Wang H.I., Feng F., Liu J., Mai Y. A Curved. Graphene Nanoribbon with Multi-Edge Structure and High Intrinsic Charge Carrier Mobility. J. Am. Chem. Soc. 2020. 142: 18293. https://doi.org/10.1021/jacs.0c07013

Liu Z., Quin H., Wang C., Chen Z., Zyska B., Narita A., Ciesielski A., Hecht S., Chi L., Mullen K., Samovi P. Photomodulation of Charge Transport in All-Semiconducting 2D-1D van der Waals Heterostructures with Suppressed Persistent Photoconductivity Effect. Adv. Mater. 2020. 32: 2001268. https://doi.org/10.1002/adma.202001268

Zhang X., Samori H.P. Coupling carbon materials with photochromic molecules for the generation pf optically responsive materials. Nat. Commun. 2016. 7: 11118.

Zheng M., Lamberti F., Collini E., Fortunati I., Bottaro G., Daniel G., Sorrentino R., Minotto A., Kukovecz A., Menna E., Silvestrini S., Durante C., Cacialli F., Meneghesso G., Gatti T. A film-forming graphene/diketopyrrolopyrrole covalent hybrid with far-red optical features: Evidence of photo-stability. Synth. Met. 2019. 258: 116201. https://doi.org/10.1016/j.synthmet.2019.116201

Guarracino P., Gatti T., Canever N., Abdu-Aguye M., Loi M.A., Menna E., Franco L. Probing photoinduced electron-transfer in graphene-dye hybrid materials for DSSC. Phys. Chem. Chem. Phys. 2017. 19: 27716. https://doi.org/10.1039/C7CP04308B

Gatti T., Manfredi N., Boldrini C., Lamberti F, Abbotto A., Menna E. A D-p-A organic dye Reduced graphene oxide covalent dyad as a new concept photosensitizer for light harvest-ing applications. Carbon. 2017. 115: 746. https://doi.org/10.1016/j.carbon.2017.01.081

Gatti T., Girardi G., Vicentini N., Brandiele R., Wirix M., Durante C., Menna E. Physico-Chemical, Electrochemical and Structural Insights Into Poly(3,4-ethylenedioxythiophene) Grafted from Molecularly Engineered Multi-Walled Carbon Nanotube. Surfaces Nanosci. Nanotechnol. 2018. 18: 1006. https://doi.org/10.1166/jnn.2018.15250

Singh J., Ruda H.E., Narayan M.R., Ompong D. Concept of excitons. In: Opt. Prop. Mater. Their Appl. (NY: Core Pub., John Wiley & Sons, Inc. 2020).

Kena-Cohen S. Ph.D Thesis. (Ann Arbor, 2010).

Luzik P.M. Ph.D (Phys.) Thesis. (Kyiv, 2007) [in Ukrainian].

Strauss V., Roth A., Sekita M., Guldi D.M. Efficient energy-conversion materials for the future: understanding and tailoring charge-transfer processes in carbon nanostructures. Chem. 2016.1: 531.https://doi.org/10.1016/j.chempr.2016.09.001

Milhnenko O.V., Blom P.W.M., Nguen T.-Q. Exciton diffusion in organic semiconductors. Energy Environ. Sci. 2015. 8: 1867. https://doi.org/10.1039/C5EE00925A

Narayan M.R., Sight J. Study of the mechanism and rate of exciton dissociation at the donor-acceptor interfaces in bulk heterojunction organic solar cells. J. Appl. Phys. 2013. 114: 73510 https://doi.org/10.1063/1.4818813

Devizis A., Jonghe-Risse J.D., Hang R., Nuech F., Janatach S., Gullians V., Moser J.-E. Dissociation of Charge Transfer States and Carrier Separation in Bilayer Organic Solar Cells: A Time-Resolved Electroabsorption Spectroscopy Study. J. Am. Chem. Soc. 2015. 137: 8192. https://doi.org/10.1021/jacs.5b03682

Wright M., Uddin. A. Organic-inorganic hybrid solar cells: A comparative review. Sol. Energy Mater. Sol. Cells. 2012. 107: 87. https://doi.org/10.1016/j.solmat.2012.07.006

Sheater C.J., Yu L., Shapter J.G. Optoelectronics properties of nanocarbons and nanocar-bon films. In: Synthesis and Applications of Nanocarbons. (NY: Core Pub., John Wiley & and Sons, Inc. 2021).

Опубліковано
2022-11-30
Як цитувати
СемчукO. Ю., Гатті, Т., & Оселла, С. (2022). Гібридні наноматеріали на основі вуглецю: огляд та перспективи. Поверхня, (14(29), 78-94. https://doi.org/10.15407/Surface.2022.14.078
Розділ
Теорія хімічної будови і реакційної здатності поверхні.